Exploiting User Preference for Online Learning in Web Content Optimization Systems
نویسندگان
چکیده
منابع مشابه
Learning opinions in user-generated web content
The user-generated Web content has been intensively analyzed in Information Extraction and Natural Language Processing research. Web-posted reviews of consumer goods are studied to find customer opinions about the products. We hypothesize that nonemotionally charged descriptions can be applied to predict those opinions. The descriptions may include indicators of product size (tall), commonplace...
متن کاملUser Preference Through Learning User Profile for Ubiquitous Recommendation Systems
As ubiquitous commerce is coming, the ubiquitous recommendation systems utilize collaborative filtering to help users with fast searches for the best suitable items by analyzing the similar preference. However, collaborative filtering may not provide high quality recommendation because it does not consider user’s preference on the attribute, the first rater problem, and the sparsity problem. Th...
متن کاملA Model of User Preference Learning for Content-Based Recommender Systems
This paper focuses to a formal model of user preference learning for content-based recommender systems. First, some fundamental and special requirements to user preference learning are identified and proposed. Three learning tasks are introduced as the exact, the order preserving and the iterative user preference learning tasks. The first two tasks concern the situation where we have the user’s...
متن کاملEffective Learning to Rank Persian Web Content
Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a ...
متن کاملTowards Better User Preference Learning for Recommender Systems
In recent years, recommender systems have become widely utilized by businesses across industries. Given a set of users, items, and observed user-item interactions, these systems learn user preferences by collective intelligence, and deliver proper items under various contexts to improve user engagements and merchant profits. Collaborative Filtering is the most popular method for recommender sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Intelligent Systems and Technology
سال: 2014
ISSN: 2157-6904,2157-6912
DOI: 10.1145/2493259